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Appendix
Surviving the Quantum Cryptocalypse

Einstein famously described quantum mechanics as “spooky action at 
a distance.” Yet many quantum mysteries seem slightly less mysterious 
when understood through the perspective of computer science. The 
mathematical abstraction of quantum computing can be thought of as a 
generalization of probability theory and Shannon’s information theory.1 
Whereas classical probabilities are always positive, so- called probability 
amplitudes are complex numbers that can be positive, negative, or imagi-
nary. The interference and cancellation of amplitudes is the basis for 
most of what gets described as quantum weirdness.2 A brief review of 
some of the mathematics of quantum computing is offered here to help 
demystify some concepts.

A classical bit is a binary scalar b∈{0,1}. A qubit, by contrast, is a vector 
of complex- valued amplitudes representing the likelihood that the qubit 
is zero or one. By definition, a qubit is |ψ⟩=α|0⟩+ β|1⟩, so it can be de-
scribed as a superposition of |0⟩ and |1⟩.3 Just as a bit can be represented in 
countless different physical systems—transistors, vacuum tubes, sema-
phores, neurons—according to engineering convention, logical qubits 
can be physically realized in different ways. Functional qubits have been 
successfully represented as ions trapped by tuned lasers, quantum dots in 
silicon, loops of superconducting metals, and atomic vacancies in a dia-
mond lattice.4 Yet it is important to appreciate that a logical qubit is a 
mathematical abstraction. The quantum formalism has even been used to 
model some macroscale phenomena in social systems.5

A qubit can be visualized on the so- called Bloch sphere (fig. A.1) as a 
vector |ψ⟩ from the origin to any point along the surface of the sphere, 
and only along the surface.6 The poles on the Z- axis represent the “com-
putational basis” states of |0⟩ and |1⟩, while the equator represents an 
infinite number of balanced superpositions of |0⟩ and |1⟩. The X- axis 
states on the equator represent the “Hadamard basis” of balanced super-
position states, known as |+⟩ and |–⟩. Quantum computing on a single 
bit can be visualized as a rotation of this vector along the surface of the 
sphere. For example, the transformation of a qubit initialized to |0⟩ into 
a balanced superposition where |0⟩ and |1⟩are equally likely can be visu-
alized as a rotation of the qubit |ψ⟩ from the north pole |0⟩ to the point 
|+⟩ on the equator.7
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Figure A.1. Bloch sphere representation of a qubit as a complex- valued vector 
of probability amplitudes

Things start to get interesting with multiple qubits. Unfortunately, the 
Bloch sphere does not work very well for visualizing more than one qubit. 
Instead, two qubits can be represented with a vector of four amplitudes 
and four computational bases for each of the possible combinations of 
zeros and ones: |ψ⟩=α|00⟩+ β|01⟩+γ|10⟩+ δ|11⟩ . The quantum state of a 
multi- qubit system is described as entangled if it cannot be expressed as 
the product of single qubit vectors.8

In general, the quantum state of a system of n qubits has 2n amplitudes. 
As a result, the simulation of quantum computers on classical machines 
quickly becomes intractable. Microsoft has developed a quantum pro-
graming language called Q# and a digital emulator that anyone can down-
load.9 Q# requires 16 gigabytes of memory to simulate 30 logical qubits, 
while 40 qubits require 16 terabytes and the services of the Azure cloud 
services. One hundred qubits would need a mind- boggling 19 million yot-
tabytes and many times the age of the universe to do any useful computa-
tion. Computer scientists conjecture that there may also exist quantum 
algorithms that cannot be simulated on a classical machine regardless of 
resource constraints.10
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In classical computing, strings of bits can be copied and manipulated 
with Boolean operators such as AND, OR, and NOT. Boolean operators 
can be combined into more complicated instructions, which in turn can be 
arranged into algorithms, which are logical recipes to compute the answers 
to problems given some input. The analog to a Boolean operator in quan-
tum computing is a normalized linear transformation of the quantum vec-
tor known as a quantum gate. A quantum gate is a (normalized) linear 
transformation of the quantum vector. This gate is a logical concept dis-
tinct from any actual circuits in a real machine.11

To use a quantum algorithm to solve a practical problem, it must be 
possible to encode input data on a set of logical qubits, evolve the quan-
tum state through a sequence of linear transformations (quantum gates) 
that manipulate superposition and entanglement, and measure the result. 
Measurement maps the overall quantum state onto just one of the system’s 
2n computational bases, which means that important quantum informa-
tion may be lost if the problem is not set up the right way. Not every 
mathematical problem is so conveniently structured.

The way in which Shor’s famous algorithm works is instructive.12 Shor 
demonstrated that the problem of factoring an n- bit number, which can 
be reduced to the problem of finding a repeating period in a sequence of 
2n numbers, can be solved with the Fourier transform on n qubits in such 
a way that the “wrong” answers cancel out while the “right” answer can be 
measured. Computer scientists use “big O” notation to describe the rela-
tive amount of computational resources that must be used to find an an-
swer to a problem given an input of size n (generally assumed to be large 
given the data sets and bandwidth with which modern computers usually 
work). A polynomial time algorithm might run in O(n2), which means the 
resources required will scale with the square of the input. An exponential 
algorithm, however, might run in O(2n), and clearly 2n >> n2 for large n. 
Classical factoring algorithms run in exponential time, which is why 
cracking a 2048-bit RSA key would take more time than the age of the 
universe. Yet Shor’s algorithm runs in polynomial time, O(n2), meaning 
that it provides an exponential speedup over the fastest classical alterna-
tive (known as the general number sieve).13

Any usable quantum computer must be able to tolerate faults in the 
preparation, computation, and measurement of qubits. Errors occur in 
classical machines, too, but they are easier to correct. It is possible to check 
and repair classical errors using backup data and checksum bits with rela-
tively low overhead.14 In quantum computing, however, arbitrary data 
cannot simply be copied for inspection. The no- cloning theorem in quan-



4  STRATEGIC STUDIES QUARTERLY  SUMMER 2020

Jon R. Lindsay

tum mechanics states that it is not possible to perfectly copy an arbitrary 
qubit to another qubit without changing it.15 This is a major contrast with 
classical computing.

To get around this problem, quantum error correction relies on some 
clever algorithmic tricks. For instance, it is possible to control for errors in 
a single qubit by using five additional (ancilla) qubits initialized to known 
values. Higher error rates in the physical implementation of logical qubits, 
moreover, require more overhead for error correction. A very large number 
of physical qubits may be needed to support small numbers of fully func-
tional logical qubits.16 Cracking a 2048-bit RSA key with Shor’s algo-
rithm requires just over 4,000 logical qubits.17 Yet when we factor in error 
correction, the fastest known implementation would require 20 million 
qubits!18 This recent innovation is a substantial improvement over the pre-
vious estimate of a billion qubits, but even 20 million is orders of magni-
tude more qubits than prototype machines are able to maintain in coher-
ence today (e.g., Google’s Sycamore entangled only 53 qubits).

Thermodynamic noise and electromagnetic effects can cause the de-
coherence of the quantum state, which disrupts superposition and entan-
glement and results in a loss of quantum information. Errors can be man-
aged but not eliminated by operating in very cold, carefully shielded 
environments. One implication is that the ability to build and maintain 
advanced laboratories and precision machinery is a vital infrastructural 
enabler of innovation in quantum computing. Given the difficult engi-
neering challenges associated with maintaining coherence at scale, more-
over, not all qubits in machines that are described as “quantum computers” 
are fully functional qubits. More simply, “not all qubits are created equal.”19 
The Canadian firm D- Wave boasts that its machines have thousands of 
qubits, but they are not fully functional. D- Wave implements a different 
approach to quantum computing known as quantum annealing that re-
quires significant computational overhead to implement quantum gate 
arrays. For cryptology, therefore, “quantum simulators and quantum an-
nealers are single- purpose devices, unable to run, for example, Shor’s algo-
rithm, and do not have any known applications to cryptanalysis.”20 Perhaps 
more importantly, the D- Wave implementation of qubits is so noisy that 
they can only support very limited forms of quantum functionality, if any.21

Quantum networking is a different type of technology from quantum 
computing, but it draws on similar quantum principles. Quantum me-
chanics can be used to provide an innovative solution to the cryptographic 
key distribution problem—a major headache for many secret communica-
tors throughout history. The quantum computing version of the famous 
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Heisenberg Uncertainty Principle, which states that you cannot localize 
the position and momentum of a particle at the same time, can be lever-
aged for cryptography. The measurement of the value of a single qubit can 
be considered relative to an axis of the Bloch sphere. If you try to measure 
a qubit that is in a balanced superposition along the computational basis 
(i.e., the quantum state vector |ψ⟩ points to the equator and you try to 
determine the pole to which |ψ⟩ is closest), the result will necessarily be 
random: |0⟩ or |1⟩ is equally likely. Conversely, if a qubit in the state of |0⟩ 
or |1⟩ is measured along the Hadamard basis, the result will also be ran-
dom: |+⟩ or |–⟩ is equally likely. A photon (or pulse of photons) can be 
used to represent a logical qubit. Polarization of photons with a rectilinear 
or diagonal filter can represent the computational and Hadamard basis 
states.22 Measuring a horizontally polarized photon with a diagonal detec-
tor provides a random result.

This fact can be leveraged to detect an eavesdropper (known as Eve by 
explanatory convention) in a communication circuit (between Alice and 
Bob). Table A.1 provides a simplified illustration of the BB84 protocol for 
quantum key distribution (QKD). Alice generates a random string of bits 
and a random series of photon polarizations. Bob prepares his own random 
series of measurements in the diagonal or rectilinear basis. If Bob measures 
a qubit with the same polarization that Alice uses to prepare it, then he will 
get an accurate result, but if not he will get a random result. Bob then 
transmits his measurement scheme to Alice via a classical channel such as 
a telephone or internet connection, and Alice tells Bob which of his polari-
zation choices match hers. By ignoring the mismatches and measuring the 
stream of photons from Alice in the correct bases, Alice and Bob can now 
share the same string of random bits. That is, they can construct a shared 
symmetric key that has not been revealed through the classical channel. 
Even though Eve can learn the measurement scheme by tapping the clas-
sical channel, she cannot deduce the private bit string unless she actually 
performs a measurement on the quantum channel. Covert measurement 
means that Eve will in effect be copying photons, but perfect copying of 
arbitrary quantum data is prohibited by the no- cloning theorem. If Eve 
tries to measure the qubits, she will change their value in the process. Bob 
will then end up measuring a different bit string than Alice transmits. 
When they then try to exchange symmetrically enciphered messages, Bob 
or Alice will decrypt gibberish; it will be obvious that there is a problem. 
Alice and Bob can also openly compare some random fraction of their bit 
string on the classical channel to check for errors, using the rest of the 
private portion if they learn that the error rate in the public portion is ac-
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ceptably low. If they detect a high error rate, however, then Alice and Bob 
can restart again or cease communicating altogether.
Table A.1. Example of quantum key distribution 

Action Data

Alice generates a secret random bit 
string. 1 0  0  1 1  0 1  0 0  1  1 1  0 0

Alice generates a random polarization 
sequence. ┼ 𝖷  ┼ 𝖷  ┼ ┼ ┼ 𝖷  𝖷  𝖷  ┼ ┼ 𝖷  𝖷 

Alice transmits polarized photons. ─ ╱   │ ╲ ─   │ ─   ╱    ╱    ╲   ─    ─   ╱ ╱

Bob generates a random 
measurement sequence and informs 
Alice via a classical communication 
channel.

𝖷  𝖷  𝖷   ┼ ┼ ┼ 𝖷  ┼ 𝖷  ┼ ┼  ┼    𝖷  ┼

Alice informs Bob which polarizations 
match via the classical channel

→Eve would not be detected here, but 
she cannot learn too much either.

N Y N   N Y Y N N   Y N Y Y Y N

Bob ignores the random bits created 
by his mismatches.

→Alice and Bob now share the secret 
bit string 0100110.

?  0     ?    ?  1  0    ?  ?  0  ? 1  1 0  ?

If Eve copies Alice’s photons, Bob will 
measure random bits.

→Bob’s increased error rate reveals 
Eve’s intervention.

?  ?  ?  ?  ?  ? ?     ?  ?  ?  ?  ?  ? ?

Quantum information science is an exciting growth area at the nexus 
of experimental physics and theoretical computer science. There are 
many other computational and cryptologic applications besides those 
discussed here, some of which could have important military or intelli-
gence applications.23 This ferment of research and discovery is simulta-
neously expanding the potential for both offensive and defensive advan-
tage in global security affairs.
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